
BASICS OF
SECURITY REQUIREMENT

ELICITATION
Shahriyar Jalayeri

What is Requirment Engineering?

1. What a system must do

2. Known limitation and constrains on the resouse or design

3. How well system must do (1)

■ Functional Requerment : (1)

− Specific, Unambiguous, Measurable, Obseravle, Testable

■ Non-functional Requirment : (2) and (3)
– E.g : Safety, Security, Availibily, Reliability, Cost, Quality, ...

What are the steps in RE?

■ Elicitation
– Interview, Brainstroming, Role Playing, Prototyping, Games, ...

■ Analysis

– Consistent and fit together, not contradicting each other

■ Specification and Documentation
– NL, Graphical (e.g. UML), Mathematical

■ Validation and Verification

Specification

■ UML, Pseudocode, Math

− Need of special training

− Translation Error

■ Natural Language

– Unconstrained use,inherently unsuitable for requirements definition

 Ambiguity (a word or phrase has two or more different meanings)

 Vagueness (lack of precision, structure and/or detail)

 Complexity

 Untestability (cannot be proven true or false when the system is implemented)

Introducing EARS

■ Easy Approach to Requirment Syntax (EARS)

■ Two cases of requirment
– Normal Behavior

■ When everything works fine

– Unwanted Behavior
■ When there is error, failure, malfunctioning

Generic Requirements Syntax

■ Template
<optional pre-condition> <optional trigger> the <system name> shall <system
response>

 Pre-condition : conditions in which the requirement can be invoked

 Trigger : event that initiates the requirement

 System response: the necessary system behaviour

Generic Requirements Syntax (cont.)

■ Template
<optional pre-condition> <optional trigger> the <system name> shall <system
response>

 Order is significatnt, follows temporal logic:
 Any preconditions must be satisfied otherwise the requirement cannot ever be activated.

 The trigger must be true for the requirement to be “fired”, but only if the preconditions were already satisfied.

 The system is required to achieve the stated system response if and only if the preconditions and trigger are
true.

Normal Behavior T1 : Ubiquitous

■ Defines the system behavior that is active all the time, it is “continious”.

■ No pre-condition or trigger, it is “unconditional”.

■ Examples
– The car shall have maximum retail price of XXX.
– The laptop shall have a maximum mass of XXX grams.
– The laptop shall have minimum XXX hours of battery life.
– The monitor shall have minimum XXX lumens of brightness.

Normal Behaviour T2 : Event-driven

■ Syntax

When <trigger> the <system name> shall <system response>

■ Req is initiated only when a triggering event is detected within the system boundary.

■ The trigger is something that the system itself can detect.

■ Examples
– When a process runs out of memory the OS shall kill the process.
– When a packet with ACK message is recived the OS shall respond with a SYN message.
– When the laptop is turned off and the power botton in pressed the laptop shall boot up.
– When the process is in idle state and the process recives a signal the process shall log

the signal number to a file under /etc/signal.log . Why?

Normal Behavior T3 : State-driven

■ Syntax

While <in specific state> the <system name> shall <system response>

■ Req is activated when the system is in a defined state, req is “cont” but only while the
system is in that specific defined state.

■ Examples
– While the ignition is on, the cas shall display the fule level and oil level to the driver.
– While thekey is in the car, the car alarm shall be disabled.
– While the laptop is running on battery and battery is less than 10 precent, the

laptop shall display “low battery” message..

Normal Behavior T4: Option

■ Syntax

Where <feature is included> the <system name> shall <system response>

■ Req is applicable only when a system includes the particular feature.

■ Examples
– Where the car has electric windows, the car windows control button shall be on

the driver door panel.

Unwanted Behavior

■ Syntax

if <optional per-condition> <trigger>, then the <system name> shall <system response>

 Major source of omission

 Variant of event driven requirement

 Given their own syntax, to be easily identified throughout the lifecycle

■ Examples
– If the car detects attempted intrusion, then the car shall activate the car alarm.

– If tampering with the RO root file-system is detects, then the system shall not boot.

– If incorrect password entered more than 5 times, then the laptop shall wait 5 seconds before asking for password again.

– If the device is flashed with lower software version, then the device shall show a warning that system is running with lower
version and stop the boot process.

System response mitigates the impact of the unwanted event, or
prevents the system from entering an unwanted state.

Complex Requirement

■ Requirement with complex conditional clauses,

■ defined using combination of When, Where, While, If-Then

■ Example
– While the laptop is operating on main electrical power, if the power cable is

disconnected, then the laptop shall display and warning message.

Volere Requirements Specification Template

Eliciting Security Requirements

■ Start by understanding the problem (not solution)

Abuse/Misuse Cases

 Abuse Case (McDermott & Fox, 1999)
 Misuse cases (Sindre & Opdahl, 2001)
 Threat Modeling (Myagmar Et al. , 2005)

 The Security Requirement Process
 Identify critical asset
 Define security goal (e.g. Confidentiality)
 Identify threats
 Identify and analyze risk
 Define security requirement

Misuse case, Misuser and threaten use case

SQUARE Methodology

 Developed by Mead & Stehney, 2005

 Consist of a 9-step process:
 Step 1: Agree on definitions
 Step 2: Identify security goals
 Step 3: Develop supporting artifacts
 Step 4: Perform risk assessment
 Step 5: Select elicitation techniques
 Step 6: Elicit security requirements
 Step 7: Categorize requirements
 Step 8: Prioritize requirements
 Step 9: Requirements inspections

Security Requirements Elicitation and Analysis Process

Reusable Security Requirements

■ Define generic assets, threats, tests and mitigation

■ Construct a security requirement repository

 STRIDE and CAPEC

References

• Mavin, Alistair, et al. "Easy approach to requirements syntax (EARS)." 2009 17th IEEE International Requirements Engineering Conference. IEEE, 2009.

• Kausar, Sumaira, et al. "Guidelines for the selection of elicitation techniques." 2010 6th International Conference on Emerging Technologies (ICET). IEEE, 2010.

• Gunda, Sai Ganesh. "Requirements engineering: elicitation techniques." (2008).

• Sindre, Guttorm, and Andreas L. Opdahl. "Capturing security requirements through misuse cases." NIK 2001, Norsk Informatikkonferanse 2001, http://www. nik. no/2001
74 (2001).

• Sindre, Guttorm, and Andreas L. Opdahl. "Eliciting security requirements with misuse cases." Requirements engineering 10.1 (2005): 34-44.

• McDermott, John, and Chris Fox. "Using abuse case models for security requirements analysis." Proceedings 15th Annual Computer Security Applications Conference
(ACSAC'99). IEEE, 1999.

• Firesmith, Donald. "Engineering security requirements." J. Object Technol. 2.1 (2003): 53-68.

• Firesmith, Donald. "Specifying reusable security requirements." J. Object Technol. 3.1 (2004): 61-75.

• Myagmar, Suvda, Adam J. Lee, and William Yurcik. "Threat modeling as a basis for security requirements." Symposium on requirements engineering for information security
(SREIS). Vol. 2005. 2005.

• Peeters, Johan. "Agile security requirements engineering." Symposium on Requirements Engineering for Information Security. Vol. 12. 2005.

• Toval, Ambrosio, et al. "Requirements reuse for improving information systems security: a practitioner’s approach." Requirements Engineering 6.4 (2002): 205-219.

• Sindre, Guttorm, Donald G. Firesmith, and Andreas L. Opdahl. "A reuse-based approach to determining security requirements." REFSQ. Vol. 3. 2003.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

