BASICS OF
SECURITY REQUIREMENT

ELICITATION

Shahriyar Jalayeri

What is Requirment Engineering?

1. What a system must do

Known limitation and constrains on the resouse or design

3. How well system must do (1)

m Functional Requerment: (1)

- Specific, Unambiguous, Measurable, Obseravle, Testable

m Non-functional Requirment : (2) and (3)
- E.g: Safety, Security, Availibily, Reliability, Cost, Quality, ...

What are the steps in RE?

m Elicitation

- Interview, Brainstroming, Role Playing, Prototyping, Games, ...

m Analysis

- Consistent and fit together, not contradicting each other

m Specification and Documentation
- NL, Graphical (e.g. UML), Mathematical

m Validation and Verification

Specification

m UML, Pseudocode, Math

- Need of special training

— Translation Error

m Natural Language

- Unconstrained use,inherently unsuitable for requirements definition
o Ambiguity (a word or phrase has two or more different meanings)
o Vagueness (lack of precision, structure and/or detail)
o Complexity

o Untestability (cannot be proven true or false when the system is implemented)

Introducing EARS

m Easy Approach to Requirment Syntax (EARS)

m [wo cases of requirment
- Normal Behavior
m When everything works fine
- Unwanted Behavior
m When there is error, failure, malfunctioning

Generic Requirements Syntax

m Jemplate

<optional pre-condition> <optional trigger> the <system name> shall <system
response>

o Pre-condition : conditions in which the requirement can be invoked
o Trigger : event that initiates the requirement

o System response: the necessary system behaviour

Generic Requirements Syntax (cont.)

m Jemplate

<optional pre-condition> <optional trigger> the <system name> shall <system
response>

o Order is significatnt, follows temporal logic:

« Any preconditions must be satisfied otherwise the requirement cannot ever be activated.
« The trigger must be true for the requirement to be “fired”, but only if the preconditions were already satisfied.

« The system is required to achieve the stated system response if and only if the preconditions and trigger are
true.

Normal Behavior T1 : Ubiquitous

m Defines the system behavior that is active all the time, it is “continious”.

’

m No pre-condition or trigger, it is “unconditional”.

m Examples

The car shall have maximum retail price of XXX.

The laptop shall have a maximum mass of XXX grams.

The laptop shall have minimum XXX hours of battery life.
The monitor shall have minimum XXX lumens of brightness.

Normal Behaviour T2 : Event-driven

m Syntax

When <trigger> the <system name> shall <system response>

m Req is initiated only when a triggering event is detected within the system boundary.
m The trigger is something that the system itself can detect.

m Examples
- When a process runs out of memory the OS shall kill the process.
- When a packet with ACK message is recived the OS shall respond with a SYN message.
- When the laptop is turned off and the power botton in pressed the laptop shall boot up.
- When the process is in idle state and the process recives a signal the process shall log

the signal number to-a-file-under/ete/signallog %

Normal Behavior T3 : State-driven

m Syntax

While <in specific state> the <system name> shall <system response>

m Req is activated when the system is in a defined state, req is “cont” but only while the
system is in that specific defined state.

m Examples
- While the ignition is on, the cas shall display the fule level and oil level to the driver.
- While thekey is in the car, the car alarm shall be disabled.

- While the laptop is running on battery and battery is less than 10 precent, the
laptop shall display “low battery” message..

Normal Behavior T4: Option

m Syntax
Where <feature is included> the <system name> shall <system response>

m Req is applicable only when a system includes the particular feature.

m Examples

- Where the car has electric windows, the car windows control button shall be on
the driver door panel.

Unwanted Behavior

m Syntax

if <optional per-condition> <trigger>, then the <system name> shall <system response>

B Major source of omission

B Variant of event driven requirement

B Given their own syntax, to be easily identified throughout the lifecycle
m Examples

- If the car detects attempted intrusion, then the car shall activate the car alarm.
- If tampering with the RO root file-system is detects, then the system shall not boot.
- If incorrect password entered more than 5 times, then the laptop shall wait 5 seconds before asking for password again.

- If the device is flashed with lower software version, then the device shall show a warning that system is running with lower
version and stop the boot process.

Complex Requirement

m Requirement with complex conditional clauses,
m defined using combination of When, Where, While, If-Then

m Example

— While the laptop is operating on main electrical power, if the power cable is
disconnected, then the laptop shall display and warning message.

Volere Requirements Specification Template

Requirement #: 79 Requirement Type: 9 Event/BUC/PUC #: 7, 9

Description: The product shall record all the roads that have been freated

Rationale: To be able fo schedule untreated roads and highlight potential danger
Originator: Arnold Snow - Chief Engineer

Fit Criterion: The recorded treated roads shall agree with the drivers’road treatwment
logs and shall be up to date within 30 minutes of the completion of
the road’s treatment

Customer Satisfaction: % Customer Dissatisfaction: 9
Dependencies: All requirements using road and Conflicte: 109

scheduling data
Supporting Materiale: ~ Work context diagram, terms

definitions in section 9 V@ler@

H i@tOry: cl’eafed February 29'2010 Copyright @ Atlantic Systems Guild

Eliciting Security Requirements

m Start by understanding the problem (not solution)

value
[Owners wish to minimise \
impose \
P to reduce
countermeasures h
Y, that may

that may be possess
reduced by
N vulnerabilities
may be aware of
leading to
that '
[Threat agents j exploit risk]
[give that increase ’ to '
rise to)
threats to assets
_J/

\ wish to abuse and/or may damage f

Abuse/Misuse Cases

Abuse Case (McDermott & Fox, 1999)
Misuse cases (Sindre & Opdahl, 2001)
Threat Modeling (Myagmar Et al. , 2005)

The Security Requirement Process

« Ildentify critical asset

Define security goal (e.g. Confidentiality)
Identify threats

Identify and analyze risk

Define security requirement

X

Custpm

Operator

Change
password

Block
repeated prevents detects

registrations *

card info

Tap com-

munication

includes

extends

Enforce
password
regime

Monitor
system

Misuse case, Misuser and threaten use case

SQUARE Methodology

o Developed by Mead & Stehney, 2005

« Consist of a 9-step process:

Step 1: Agree on definitions

Step 2: Identify security goals

Step 3: Develop supporting artifacts
Step 4: Perform risk assessment
Step 5: Select elicitation techniques
Step 6: Elicit security requirements
Step 7: Categorize requirements
Step 8: Prioritize requirements

Step 9: Requirements inspections

Numbear

Stap

Input

Techniques

Participants

Output

1

Agree on definitions

Identify assets and

security goals

Candidate definition
IEEE and other standards

" Definitions, candidate

goals, business drivers,
pol s and procedures,
examples

Structured interviews,
focus group

Facilitated work session,

surveys, inteniews

Stakeholders,
requirements team

Stakeholders,

requirements engineer

Agreed-to definitions

Assets and goals

Develop artif;
0 support
requirements definition

urity

Potential artifacts (e.g
El 05, mi
templates, form

Work session

Requirements engineer

Perform risk assessment

elicitation
qUES

Elicit security
requirements

whether they are
requirements or other
kinds of constraints

Misuse cases, scenarios,
security goals

candidate technig
expertise of stakel
organizatior
culture, leve

needed
analysis, etc.

risk assessment
. selected

Initial requirement 5,
architecture

threat anal

ty

=nt method,

risk against organizational
risk toler cluding

Work session

Joi

t Application
Development (JAD),
interviews, surveys,
model-based analysis,
checkl lists of
reusable requirements
document reviews

Work s ion using a
standard set of categories

[Req

Requirements engi
risk expert, stakel

Requirements engineer

Stakeholders facilitated by :

requirements engineer

ngine
other specialists as
needed

Categorized requires

Selected elicitation

techniques

ial cut at security
requirements

Prioritize requireme

Categorized requirements

Prioritization methods
such as Triage, Win-Win

requirements engineer

Prioritized requirem

Requirements inspection

Prioritized requirements,
candidate formal
inspectior i

Inspection methods such
as Fagan, peer reviews

Inspection team

Initial selected
requirements,
documentation of
decision-making process

and rationale

Security Requirements Elicitation and Analysis Process

Reusable Security Requirements

m Define generic assets, threats, tests and mitigation

m Construct a security requirement repository

« STRIDE and CAPEC

Generic Security Use Case: Access Control

Path name: Reject invalid authentication

Preconditions:
Misuser has valid means of user identification but invalid
means of user authentication.
Misuser
Interactions

System Requirements
System System Actions
Interactions
Request user
identity and
authentication.

Provide valid user id
but invalid
authentication.

Attempt
identification,
authentication &
authorization.

Reject misuser
by cancelling
transaction.

Postconditions:

1) Misuser has valid means of user identification but invalid
means of user authentication AND

2) Misuser not authenticated, not granted access AND

3) Access control failure registered.

Generic Misuse Case: Spoof User Access

Summary: The misuser successfully makes the system
(physical / human / computerized) believe he is a legitimate
user, thus gaining access to a restricted system / service /

resource / building.

Preconditions:

1) The misuser has a legitimate user’s valid means to identify
and authenticate OR

2) The misuser has invalid means to identify and authenticate,
but so similar to valid means that the system is unable to
distinguish (even if operating at its normal capabilities) OR

3) The system is corrupted to accept means of identification
and authentication that would normally have been rejected.
The misuser may previously have performed misuse case
“Tamper with system” to corrupt the system.

Misuser interactions System interactions

Request access / service

Request identification and
authentication

Misidentify and
misauthenticate

Grant access / provide service

Postconditions:
1) The misuser can do anything the legitimate user could
have done within one access session AND

2) In the system’s log (if any), it will appear that the system
was accessed by the legitimate user.

References

e Mavin, Alistair, et al. "Easy approach to requirements syntax (EARS)." 2009 17th IEEE International Requirements Engineering Conference. IEEE, 2009.
e Kausar, Sumaira, et al. "Guidelines for the selection of elicitation techniques." 2010 6th International Conference on Emerging Technologies (ICET). IEEE, 2010.
e Gunda, Sai Ganesh. "Requirements engineering: elicitation techniques." (2008).

e Sindre, Guttorm, and Andreas L. Opdahl. "Capturing security requirements through misuse cases." NIK 2001, Norsk Informatikkonferanse 2001, http://www. nik. no/2001
74 (2001).

e Sindre, Guttorm, and Andreas L. Opdahl. "Eliciting security requirements with misuse cases." Requirements engineering 10.1 (2005): 34-44.

e McDermott, John, and Chris Fox. "Using abuse case models for security requirements analysis." Proceedings 15th Annual Computer Security Applications Conference
(ACSAC'99). IEEE, 1999.

e Firesmith, Donald. "Engineering security requirements." J. Object Technol. 2.1 (2003): 53-68.
e Firesmith, Donald. "Specifying reusable security requirements." J. Object Technol. 3.1 (2004): 61-75.

e Myagmar, Suvda, Adam J. Lee, and William Yurcik. "Threat modeling as a basis for security requirements." Symposium on requirements engineering for information security
(SREIS). Vol. 2005. 2005.

e Peeters, Johan. "Agile security requirements engineering." Symposium on Requirements Engineering for Information Security. Vol. 12. 2005.
e Toval, Ambrosio, et al. "Requirements reuse for improving information systems security: a practitioner’s approach." Requirements Engineering 6.4 (2002): 205-219.

e Sindre, Guttorm, Donald G. Firesmith, and Andreas L. Opdahl. "A reuse-based approach to determining security requirements." REFSQ. Vol. 3. 2003.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

